Wan HT, Mruk DD, Li SY, Mok KW, Lee WM, Wong CK, Cheng CY. p-FAK-Tyr 397 regulates spermatid adhesion in the rat testis via its effects on F-actin organization at the ectoplasmic specialization. Am J Physiol Endocrinol Metab 305: E687-E699, 2013. First published July 23, 2013; doi:10.1152/ajpendo.00254.2013.-During spermatogenesis, the molecular mechanism that confers spermatid adhesion to the Sertoli cell at the apical ectoplasmic specialization (apical ES), a testis-specific F-actin-rich adherens junction, in the rat testis remains elusive. Herein, the activated form of focal adhesion kinase (FAK), p-FAK-Tyr 397 , a component of the apical ES that was expressed predominantly and stage specifically in stage VII-early stage VIII tubules, was found to be a crucial apical ES regulator. Using an FAK-Y397E phosphomimetic mutant cloned in a mammalian expression vector for its transfection vs. FAK and vector alone in adult rat testes in vivo, its overexpression was found to cause defects in spermiation. These defects in spermiation were manifested by entrapment of spermatids in the seminiferous epithelium in late stage VIII-X tubules and were mediated by a disruption on the spatiotemporal expression and/or mislocalization of actin regulatory protein actin-related protein 3, which induces branched actin polymerization, epidermal growth factor receptor pathway substrate 8 (an actin barbed end capping and bundling protein), and palladin (an actin cross-linking and bundling protein). This thus perturbed changes of F-actin organization at the apical ES to facilitate spermiation, which also led to a concomitant alteration in the distribution and upregulation of adhesion proteins nectin-2 and nectin-3 at the apical ES. As such, nectin-2 and -3 remained at the apical ES to anchor step 19 spermatids on to the epithelium, delaying spermiation. These findings illustrate a mechanistic pathway mediated by p-FAK-Tyr 397 that regulates spermatid adhesion at the apical ES in vivo. spermatogenesis; focal adhesion kinase; focal adhesion kinase mutant; adherens junction; actin filament bundles; testis IN THE RAT TESTIS, step 1 spermatids derived from secondary spermatocytes via meiosis undergo extensive morphological changes during spermiogenesis (8,10,20). Besides changes in cell shape via 19 steps in which round spermatids (step 1) transform into elongated spermatids (step 19), step 1 spermatids residing in the adluminal compartment but near the basal compartment and adjacent to the basement membrane must traverse back-and-forth the seminiferous epithelium during the epithelial cycle of spermatogenesis (8,19,22). As such, fully developed spermatids (i.e., spermatozoa) can be lined up at the luminal edge of the tubule lumen at late stage VIII of the epithelial cycle for spermiation (10,20,24). During spermiogenesis, a testis-specific adherens junction (AJ) appears at the Sertoli-spermatid (step 8) interface at stage VIII of the cycle known as apical ectoplasmic specialization (apical ES) (6, 27, 32). Once apical ES forms, it replaces d...