There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or a investigation for maximising their effectiveness. We carry out a comparison between seven common machine learning methods for galaxy classification (Convolutional Neural Network (CNN), K-nearest neighbour, Logistic Regression, Support Vector Machine, and Neural Networks) by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these seven methods in our study. Using a sample of ∼2,800 galaxies with visual classification from GZ1, we reach an accuracy of ∼0.99 for the morphological classification of Ellipticals and Spirals. The further investigation of the galaxies that were misclassified but with high predicted probabilities in our CNN reveals the incorrect classification provided by GZ1, and that the galaxies having a low probability of being either spirals or ellipticals are visually Lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both Es and Spirals. We confirmed ∼2.5% galaxies are misclassified by GZ1 in our study. After correcting these galaxies' label, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).