A major diagnostic marker in most rheumatoid arthritis (RA) patients is the rheumatoid factor (RF), an autoantibody that binds to the Fc region of IgG. To delineate the Ig genes and the underlying mechanism for RF production in RA patients, we applied a systematic approach to define the genetic origins of three IgG RFs derived from the synovial fluid of two RA patients. The results show that two of three IgG RF have substantial numbers of somatic mutations in their variable (V) regions, ranging from 13 to 23 mutations over a stretch of 291-313 nucleotides, resulting in a frequency of 4.4-7.8%. However, one IgG RF has only one mutation in each V region. This result indicates that an IgG RF may arise from a germline gene by very few mutations. The mutations occur mainly in the complementarity-determining regions (CDRs), and the mutations in the CDRs often lead to amino acid substitutions. Five of the six corresponding germline V genes have been found to encode either natural autoantibodies or autoantibodies in other autoimmune disorders; and three of the six V genes have been found in fetal liver. Taken together with other results, the data show that (a) several potentially pathogenic RFs in RA patients arise from natural autoantibodies, and (b) only a few mutations are required to convert the natural autoantibodies to IgG RFs. (J. Clin. Invest. 1994. 93:2545-2553