2009
DOI: 10.1007/s00601-009-0070-3
|View full text |Cite
|
Sign up to set email alerts
|

Restricted Three Body Problems at the Nanoscale

Abstract: In this paper, we investigate some of the classical restricted three body problems at the nanoscale, such as the circular planar restricted problem for three C 60 fullerenes, and a carbon atom and two C 60 fullerenes. We model the van der Waals forces between the fullerenes by the Lennard-Jones potential. In particular, the pairwise potential energies between the carbon atoms on the fullerenes are approximated by the continuous approach, so that the total molecular energy between two fullerenes can be determin… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2010
2010
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 19 publications
0
3
0
Order By: Relevance
“…3, this mathematical problem has limited physical significance, and we can approximate the potential by integrating over the buckyball sphere. Like Chan et al [11] we, therefore, generate an effective potential experienced by a "test" carbon atom located at a point r by integrating over the spherical surface to obtain…”
Section: Quantum Mechanical Approachmentioning
confidence: 99%
See 1 more Smart Citation
“…3, this mathematical problem has limited physical significance, and we can approximate the potential by integrating over the buckyball sphere. Like Chan et al [11] we, therefore, generate an effective potential experienced by a "test" carbon atom located at a point r by integrating over the spherical surface to obtain…”
Section: Quantum Mechanical Approachmentioning
confidence: 99%
“…The mechanics of such systems is traditionally analyzed via classical techniques based on the Euler-Lagrange equations (see, for example, Refs. [9][10][11]). The extension to finite temperature and thereby thermodynamical functions is made via the Nosé-Hoover Hamiltonian [12,13].…”
mentioning
confidence: 97%
“…Chan et al [9] conducted a research of two-body problems at the nanoscale, including fullerene-fullerene and fullerene-carbon nanotube. Chan et al [10] looked at the placements of three C 60 fullerenes, a carbon atom, and two C 60 fullerenes in the circular planar constrained three-body issue. The maximum angular frequency of two and three fullerene systems reaches the terahertz range, according to their findings.…”
Section: General Introductionmentioning
confidence: 99%