Long-term (40 years) eVects of two soil amelioration techniques [NPKMgCa fertilization + liming; combination of PKMgCa fertilization, liming, tillage, and introduction of lupine (Lupinus polyphyllus L.)] on chemical topsoil properties, stand nutrition, and stand growth at two sites in Germany (PfaVenwinkel, Pustert) with mature Scots pine (Pinus sylvestris L.) forest were investigated. Both sites are characterized by base-poor parent material, historic N and P depletion by intense litter-raking, and recent high atmospheric N input. Such sites contribute signiWcantly to the forested area in Central Europe. Amelioration resulted in a long-term increase of pH, base saturation, and exchangeable Ca and Mg stocks in the topsoil. Moreover, signiWcant losses of the forest Xoor in organic carbon (OC) and nitrogen stocks, and a decrease of the C/N ratio in the topsoil were noticed. The concentrations and stocks of OC and N in the mineral topsoil increased; however, the increases compensated only the N, but not the OC losses of the forest Xoor. During the recent 40 years, the N nutrition of the stands at the control plots improved considerably, whereas the foliar P, K, and Ca concentrations decreased.The 100-fascicle weights and foliar concentrations of N, P, Mg, and Ca were increased after both amelioration procedures throughout the entire 40-year period of investigation. For both stands, considerable growth acceleration during the recent 40 years was noticed on the control plots; the amelioration resulted in an additional signiWcant long-term growth enhancement, with the NPKMgCa fertilization liming + being more eVective than the combination of PKMgCa fertilization, liming, tillage, and introduction of lupine. The comprehensive evaluation of soil, foliage, and growth data revealed a key relevance of the N and P nutrition of the stands for their growth, and a change from initial N limitation to a limitation of other growth factors (P, Mg, Ca, and water).