A typical undergraduate biology curriculum covers a very large number of concepts and details. We describe the development of a Biology Concept Framework (BCF) as a possible way to organize this material to enhance teaching and learning. Our BCF is hierarchical, places details in context, nests related concepts, and articulates concepts that are inherently obvious to experts but often difficult for novices to grasp. Our BCF is also cross-referenced, highlighting interconnections between concepts. We have found our BCF to be a versatile tool for design, evaluation, and revision of course goals and materials. There has been a call for creating Biology Concept Inventories, multiple-choice exams that test important biology concepts, analogous to those in physics, astronomy, and chemistry. We argue that the community of researchers and educators must first reach consensus about not only what concepts are important to test, but also how the concepts should be organized and how that organization might influence teaching and learning. We think that our BCF can serve as a catalyst for community-wide discussion on organizing the vast number of concepts in biology, as a model for others to formulate their own BCFs and as a contribution toward the creation of a comprehensive BCF.
INTRODUCTIONThe idea of a Concept Inventory as an assessment tool dates back to 1992, when the Force Concept Inventory (FCI) was developed to measure students' conceptual understanding of motion and force . A major accomplishment of this work was to create a multiple-choice test in which the erroneous answers diagnose the misconceptions held by students about particular concepts. The FCI has been used over the past decade by physicists at several institutions of higher learning to assess the effectiveness of different teaching methods (Hake, 1998). Similar multiple-choice exams have been developed for astronomy (Astronomy Diagnostic Test [Zeilik et al., 1997;Deming, 2002;Hufnagel, 2002;Zeilik, 2003]) and chemistry (ConcepTests: http://chem.wisc.edu/∼concept/).Efforts to create similar standardized tests in biology are now under way. A group headed by Michael Klymkowsky at the University of Colorado at Boulder has been creating concept tests to cover "introductory, genetics, molecular, cellular, and developmental biology" (Klymkowsky et al., 2003). Before these tests can be useful for a variety of courses and institutions, there needs to be agreement as to which concepts are important. Bio2010: Transforming Undergraduate Education for Future Research Biologists, a report produced by the National Research Council (NRC, 2002), provides support for this effort, in stating that "understanding the unity and diversity of life requires mastery of a set of fundamental concepts" (Recommendation 1.1). Lists of biology concepts important for high school students can be found in the American Association for the Advancement of Science (AAAS) Project 2061 report Benchmarks for Scientific Literacy and the NRC report National Science Education Standards (AAAS, 198...