We have developed an individualized melanoma vaccine based on transfection of autologous dendritic cells (DCs) with autologous tumor-mRNA. Dendritic cells loaded with complete tumor-mRNA may generate an immune response against a broad repertoire of antigens, including unique patient-specific antigens. The purpose of the present phase I/II trial was to evaluate the feasibility and safety of the vaccine, and the ability of the DCs to elicit T-cell responses in melanoma patients. Further, we compared intradermal (i.d.) and intranodal (i.n.) vaccine administration. Twenty-two patients with advanced malignant melanoma were included, each receiving four weekly vaccines. Monocyte-derived DCs were transfected with tumor-mRNA by electroporation, matured and cryopreserved. We obtained successful vaccine production for all patients elected. No serious adverse effects were observed. A vaccine-specific immune response was demonstrated in 9/19 patients evaluable by T-cell assays (T-cell proliferation/interferon-g ELISPOT) and in 8/18 patients evaluable by delayed-type hypersensitivity (DTH) reaction. The response was demonstrated in 7/10 patients vaccinated intradermally and in 3/12 patients vaccinated intranodally. We conclude that immuno-gene-therapy with the described DC-vaccine is feasible and safe, and that the vaccine can elicit in vivo T-cell responses against antigens encoded by the transfected tumor-mRNA. The response rates do not suggest an advantage in applying i.n. vaccination. Cancer Gene Therapy (2006) 13, 905-918.