HHP (hypobaric hypoxia preconditioning) induces the overexpression of HSP70 (heat-shock protein 70), as well as tolerance to cerebral ischaemia. In the present study, we hypothesized that HHP would protect against HAE (high-altitude exposure)-induced acute lung injury and oedema via promoting the expression of HSP70 in lungs prior to the onset of HAE. At 2 weeks after the start of HHP, animals were exposed to a simulated HAE of 6000 m in a hypobaric chamber for 24 h. Immediately after being returned to ambient pressure, the non-HHP animals had higher scores of alveolar oedema, neutrophil infiltration and haemorrhage, acute pleurisy (e.g. increased exudate volume, increased numbers of polymorphonuclear cells and increased lung myeloperoxidase activity), increased pro-inflammatory cytokines [e.g. TNF-α (tumour necrosis factor-α), IL (interleukin)-1β and IL-6], and increased cellular ischaemia (i.e. glutamate and lactate/pyruvate ratio) and oxidative damage [glycerol, NOx (combined nitrate+nitrite) and 2,3-dihydroxybenzoic acid] markers in the BALF (bronchoalveolar fluid). HHP, in addition to inducing overexpression of HSP70 in the lungs, significantly attenuated HAE-induced pulmonary oedema, inflammation, and ischaemic and oxidative damage in the lungs. The beneficial effects of HHP in preventing the occurrence of HAE-induced pulmonary oedema, inflammation, and ischaemic and oxidative damage was reduced significantly by pretreatment with a neutralizing anti-HSP70 antibody. In conclusion, HHP may attenuate the occurrence of pulmonary oedema, inflammation, and ischaemic and oxidative damage caused by HAE in part via up-regulating HSP70 in the lungs.