The aim of this work was to develop an efficient methodology for the reliable fractioning of nitratedpolycyclic aromatic hydrocarbons (nitro-PAHs) and polycyclic aromatic hydrocarbons (PAHs). Unlike what usually occurs under pressures developed by HPLC (high performance liquid chromatography) systems (above 11 bar) we observed that when normal phase chromatographic fractioning procedures are accomplished under very low pressures (about 1 bar), dipole molecules (nitro-PAHs) elute much faster than non-polar organic molecules (PAHs). This finding allowed developing an original and very efficient methodology for fractioning nitro-PAHs and PAHs. This method is based on normal-phase liquid chromatography through a home-made phenyl column by using hexane as mobile phase at very low speed flow (0.05 ml min
À1). Unlike typical HPLC methodology, the fractioning of nitro-PAHs and PAHs was accomplished as a function of their polarity (first the polar compounds as a unique peak and further, the non-polar compounds, PAHs) rather than as a function of their medium polarizability.