2022
DOI: 10.48550/arxiv.2206.09293
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation

Abstract: Recently, several Bayesian deep learning methods have been proposed for semi-supervised medical image segmentation. Although they have achieved promising results on medical benchmarks, some problems are still existing. Firstly, their overall architectures belong to the discriminative models, and hence, in the early stage of training, they only use labeled data for training, which might make them overfit to the labeled data. Secondly, in fact, they are only partially based on Bayesian deep learning, as their ov… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?