Strong sun glint noise is an inevitable obstruction for tiny human object detection in maritime search and rescue (SAR) tasks, which can significantly deteriorate the performance of local contrast method (LCM)-based algorithms and cause high false alarm rates. For SAR tasks in noisy environments, it is more important to find tiny objects than localize them. Hence, considering background clutter and strong glint noise, in this study, a noise suppression methodology for maritime scenarios (HDetect-VS) is established to achieve tiny human object enhancement and detection based on visual saliency. To this end, the pixel intensity value distributions, color characteristics, and spatial distributions are thoroughly analyzed to separate objects from background and glint noise. Using unmanned aerial vehicles (UAVs), visible images with rich details, rather than infrared images, are applied to detect tiny objects in noisy environments. In this study, a grayscale model mapped from the HSV model (HSV-gray) is used to suppress glint noise based on color characteristic analysis, and large-scale Gaussian Convolution is utilized to obtain the pixel intensity surface and suppress background noise based on pixel intensity value distributions. Moreover, based on a thorough analysis of the spatial distribution of objects and noise, two-step clustering is employed to separate objects from noise in a salient point map. Experiments are conducted on the SeaDronesSee dataset; the results illustrate that HDetect-VS has more robust and effective performance in tiny object detection in noisy environments than other pixel-level algorithms. In particular, the performance of existing deep learning-based object detection algorithms can be significantly improved by taking the results of HDetect-VS as input.