The turnouts in railway infrastructure constitute bottlenecks, limiting the capacity of the entire railway network. Due to their design and geometry, these turnouts force speed limits. The need to ensure the proper technical condition of turnouts has prompted ongoing scientific research and the use of modern technological solutions. Until now, there have been no tests for the correct location of the geometric center of a double and outside slip turnout with the related geometric relationships. Therefore, the main objective of this research was to demonstrate the position of the geometric centre of a double slip turnout and the geometric conditions of the curves of circular diverted tracks by measuring the horizontal versines and geometric irregularities of turnouts. The application of this surveying method, with reference to obtuse crossings and arising from geometric dependencies in the double and outside slip turnout, is defined and implemented (also known as a method for checking the correct location of the geometric center of a turnout—Surveying and Monitoring of the Geometric Center of a Double and Outside Slip Turnout (SMDOST)) via the Magnetic-Measuring Square (MMS) and electronic Total Station. This method also recommends measuring the horizontal versines of the diverted tracks. This paper presents the results of field measurements using the SMDOST and MMS methods, which were applied to carry out an analysis and evaluation of the turnout geometry conditions, thereby presenting the irregularities that cause turnout deformations. The validity of the SMDOST method using MMS and Total Station was thus confirmed. The observations from the conducted research indicate that neglecting measurements of the geometry of the turnouts resulted in additional irregularities in their conditions.