Conspectus
Photocatalytic CO2 reduction is a critical objective
in the field of artificial photosynthesis because it can potentially
make a total solution for global warming and shortage of energy and
carbon resources. We have successfully developed various highly efficient,
stable, and selective photocatalytic systems for CO2 reduction
using transition metal complexes as both photosensitizers and catalysts.
The molecular architectures for constructing selective and efficient
photocatalytic systems for CO2 reduction are discussed
herein. As a typical example, a mixed system of a ring-shaped Re(I)
trinuclear complex as a photosensitizer and fac-[Re(bpy)(CO)3{OC2H4N(C2H4OH)2}] as a catalyst selectively photocatalyzed CO2 reduction to CO with the highest quantum yield of 82% and a turnover
number (TON) of over 600. Not only rare and noble metals but also
earth abundant ones, such as Mn(I), Cu(I), and Fe(II) can be used
as central metal cations. In the case using a Cu(I) dinuclear complex
as a photosensitizer and fac-Mn(bpy)(CO)3Br as a catalyst, the total formation quantum yield of CO and HCOOH
from CO2 was 57% and TONCO+HCOOH exceeded 1300.
Efficient supramolecular photocatalysts for CO2 reduction,
in which photosensitizer and catalyst units are connected through
a bridging ligand, were developed for removing a diffusion control
on collisions between a photosensitizer and a catalyst. Supramolecular
photocatalysts, in which [Ru(N∧N)3]2+-type photosensitizer and Re(I) or Ru(II) catalyst units
are connected to each other with an alkyl chain, efficiently and selectively
photocatalyzed CO2 reduction in solutions. Mechanistic
studies using time-resolved IR and electrochemical measurements provided
molecular architecture for constructing efficient supramolecular photocatalysts.
A Ru(II)–Re(I) supramolecular photocatalyst constructed according
to this molecular architecture efficiently photocatalyzed CO2 reduction even when it was fixed on solid materials. Harnessing
this property of the supramolecular photocatalysts, two types of hybrid
photocatalytic systems were developed, namely, photocatalysts with
light-harvesting capabilities and photoelectrochemical systems for
CO2 reduction.
Introduction of light-harvesting capabilities
into molecular photocatalytic
systems should be important because the intensity of solar light shone
on the earth’s surface is relatively low. Periodic mesoporous
organosilica, in which methyl acridone groups are embedded in the
silica framework as light harvesters, was combined with a Ru(II)–Re(I)
supramolecular photocatalyst with phosphonic acid anchoring groups.
In this hybrid, the photons absorbed by approximately 40 methyl acridone
groups were transferred to one Ru(II) photosensitizer unit, and then,
the photocatalytic CO2 reduction commenced.
To use
water as an abundant electron donor, we developed hybrid
photocatalytic systems combining metal-complex photocatalysts with
semiconductor photocatalysts that display high photooxidation powers,
in which two photons are sequential...