In normal rats callosal projections in striate cortex connect retinotopically corresponding, nonmirror-symmetric cortical loci, whereas in rats bilaterally enucleated at birth, callosal fibers connect topographically mismatched, mirror-symmetric loci. Moreover, retina input specifies the topography of callosal projections by postnatal day (P)6. To investigate whether retinal input guides development of callosal maps by promoting either the corrective pruning of exuberant axon branches or the specific ingrowth and elaboration of axon branches at topographically correct places, we studied the topography of emerging callosal connections at and immediately after P6. After restricted intracortical injections of anterogradely and retrogradely transported tracers we observed that the normal, nonmirror-symmetric callosal map, as well as the anomalous, mirror-symmetric map observed in neonatally enucleated animals, are present by P6-7, just as collateral branches of simple architecture emerge from their parental axons and grow into superficial cortical layers. Our results therefore do not support the idea that retinal input guides callosal map formation by primarily promoting the large-scale elimination of long, nontopographic branches and arbors. Instead, they suggest that retinal input specifies the sites on the parental axons from which interstitial branches will grow to invade middle and upper cortical layers, thereby ensuring that the location of invading interstitial branches is accurately related to the topographical location of the soma that gives rise to the parental axon. Moreover, our results from enucleated rats suggest that the cues that determine the mirror-symmetric callosal map exert only a weak control on the topography of fiber ingrowth.