Retinal lesions classification for diabetic retinopathy using custom ResNet-based classifier
Silpa Ajith Kumar,
James Satheesh Kumar
Abstract:<span>Failure to diagnose and treat retinal illnesses on time might lead to irreversible blindness. The focus is on three common retinal lesions associated with diabetic retinopathy (DR): microaneurysms (MAs), haemorrhages, and exudates. The proposed solution leverages deep learning, employing a customized residual network (ResNet) based classifier trained on real-time retinal images meticulously annotated and graded by ophthalmologists. Annotation noise was a significant obstacle addressed by downsampli… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.