Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein–Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.
Usher syndrome (USH) is an inherited disorder characterized by sensorineural hearing loss (SNHL), retinitis pigmentosa (RP)-related vision loss, and vestibular dysfunction. USH presents itself as three distinct clinical types, 1, 2, and 3, with no biomarker for early detection. This study aimed to explore whether microRNA (miRNA) expression in USH cell lines is dysregulated compared to the miRNA expression pattern in a cell line derived from a healthy human subject. Lymphocytes from USH patients and healthy individuals were isolated and transformed into stable cell lines using Epstein–Barr virus (EBV). DNA from these cell lines was sequenced using a targeted panel to identify gene variants associated with USH types 1, 2, and 3. Microarray analysis was performed on RNA from both USH and control cell lines using NanoString miRNA microarray technology. Dysregulated miRNAs identified by the microarray were validated using droplet digital PCR technology. DNA sequencing revealed that two USH patients had USH type 1 with gene variants in USH1B (MYO7A) and USH1D (CDH23), while the other two patients were classified as USH type 2 (USH2A) and USH type 3 (CLRN-1), respectively. The NanoString miRNA microarray detected 92 differentially expressed miRNAs in USH cell lines compared to controls. Significantly altered miRNAs exhibited at least a twofold increase or decrease with a p value below 0.05. Among these miRNAs, 20 were specific to USH1, 14 to USH2, and 5 to USH3. Three miRNAs that are known as miRNA-183 family which are crucial for inner ear and retina development, have been significantly downregulated as compared to control cells. Subsequently, droplet digital PCR assays confirmed the dysregulation of the 12 most prominent miRNAs in USH cell lines. This study identifies several miRNA signatures in USH cell lines which may have potential utility in Usher syndrome identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.