PURPOSE. To determine the genetic contribution to the pattern of retinal vascular branching expressed by its fractal dimension. METHODS. This was a cross-sectional study of 50 monozygotic and 49 dizygotic, same-sex twin pairs aged 20 to 46 years. In 508, disc-centered fundus photographs, the retinal vascular fractal dimension was measured using the box-counting method and compared within monozygotic and dizygotic twin pairs using Pearson correlation coefficients. Falconer's formula and quantitative genetic models were used to determine the genetic component of variation. RESULTS. The mean fractal dimension did not differ statistically significantly between monozygotic and dizygotic twin pairs (1.505 vs. 1.495, P ¼ 0.06), supporting that the study population was suitable for quantitative analysis of heritability. The intrapair correlation was markedly higher (0.505, P ¼ 0.0002) in monozygotic twins than in dizygotic twins (0.108, P ¼ 0.46), corresponding to a heritability h 2 for the fractal dimension of 0.79. In quantitative genetic models, dominant genetic effects explained 54% of the variation and 46% was individually environmentally determined. CONCLUSIONS. In young adult twins, the branching pattern of the retinal vessels demonstrated a higher structural similarity in monozygotic than in dizygotic twin pairs. The retinal vascular fractal dimension was mainly determined by genetic factors, which accounted for 54% of the variation. The genetically predetermination of the retinal vasculature may affect the retinal response to potential vascular disease in later life.