Intraarticular gene transfer of cyclin-dependent kinase (CDK) inhibitors to suppress synovial cell cycling has shown efficacy in treating animal models of rheumatoid arthritis. Endogenous CDK inhibitors also modulate immune function via a CDK-independent pathway. Accordingly, systemic administration of small molecules that inhibit CDK may or may not ameliorate arthritis. To address this issue, alvocidib (flavopiridol), known to be tolerated clinically for treating cancers, and a newly synthesized CDK4/6-selective inhibitor were tested for antiarthritic effects. In vitro, they inhibited proliferation of human and mouse synovial fibroblasts without inducing apoptosis. In vivo, treatment of collagen-induced arthritis mice with alvocidib suppressed synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII were maintained. Treatment was effective even when therapeutically administered. Treated mice developed arthritis after termination of treatment. Thus, immune responses to CII were unimpaired. The same treatment ameliorated arthritis induced by K/BxN serum transfer to lymphocyte-deficient mice. Similarly, the CDK4/6-selective inhibitor suppressed collagen-induced arthritis. Both small-molecule CDK inhibitors were effective in treating animal models of rheumatoid arthritis not by suppressing lymphocyte function. Thus, the two small-molecule CDK inhibitors ameliorated arthritis models in a distinctive way, compared with other immunosuppressive drugs.