Diethylstilbestrol (DES), a non-steroidal estrogen, has been found to cause altered germ cell development and disordered ovarian development in fish females. However, the mechanisms that might be involved are poorly understood. In this study, female juveniles of yellow catfish (Pelteobagrus fulvidraco) (120 days post-hatching) were exposed to two doses (10 and 100 ng l ) of DES for 28 days. After the endpoint of exposure, decreased ovary weight and gonadosomatic index, as well as various ovarian impairments were observed in response to DES. Besides, DES elevated the mRNA levels of vitellogenin 1 (vtg 1) and estrogen receptor 1 (esr 1) in liver and decreased 17β-estradiol level in plasma. Correspondingly, suppressed mRNA levels of the key genes in the hypothalamic-pituitary-gonadal axis (such as cyp19a1b, gnrh-II, fshβ and lhβ in brain and fshr, lhr and cyp19a1a in ovary) after DES exposure were also observed. The declined level of plasma 17β-estradiol and altered gene expressions of genes in the hypothalamic-pituitary-gonadal axis were thus supposed to be closely related to the disrupted oogenesis in DES-treated fish. Analyses further demonstrated that, higher concentration of DES elevated the expression ratio of bax/bcl-2, indicating the enhanced apoptosis occurred in ovary. Moreover, DES upregulated the expressions of genes involved in proliferation (cyclin d1 and pcna), meiotic entry (cyp26a1 and scp3) and meiotic maintenance (dmc1), resulting in arrested oogenesis in catfish. The present study greatly extended our understanding on the mechanisms underlying of reproductive toxicity of DES on fish oogenesis.