Insulin resistance plays a major role in the development of type 2 diabetes and obesity and affects a number of biological processes such as mitochondrial biogenesis. Though mitochondrial dysfunction has been linked to the development of insulin resistance and pathogenesis of type 2 diabetes, the precise mechanism linking the two is not well understood. We used high fat diet (HFD)-induced obesity dependent diabetes mouse models to gain insight into the potential pathways altered with metabolic disease, and carried out quantitative proteomic analysis of liver mitochondria. As previously reported, proteins involved in fatty acid oxidation, branched chain amino acid degradation, tricarboxylic acid cycle, and oxidative phosphorylation were uniformly up-regulated in the liver of HFD fed mice compared with that of normal diet. Further, our studies revealed that retinol metabolism is distinctly down-regulated and the mitochondrial structural proteins-components of mitochondrial intermembrane space bridging (MIB) complex (Mitofilin, Sam50, and ChChd3), and Tim proteins-essential for protein import, are significantly up-regulated in HFD fed mice. Structural and functional studies on HFD and normal diet liver mitochondria revealed remodeling of HFD mitochondria to a more condensed form with increased respiratory capacity and higher ATP levels compared with normal diet mitochondria. Thus, it is likely that the structural remodeling is essential to accommodate the increased protein content in presence of HFD: the mechanism could be through the MIB complex promoting contact site and crista junction formation and in turn facilitating the lipid and protein uptake. Obesity has become a global epidemic and in the United States alone more than one third of adults (34%) are obese and over 11% of the population over the age of 20 are diabetic (1, 2). Even though the precise mechanisms causing obesity are still being determined, it is well established that obesity induces insulin resistance leading to the pathogenesis of type 2 diabetes (T2D) 1 (3, 4). Insulin resistance has been implicated in multiple organ damage such as liver, skeletal muscle, and adipose tissues (5). This is in view of the fact that cellular glucose homeostasis is tightly regulated by insulin secretion from the pancreatic ā¤-cells and glucose uptake by muscle and output by liver. Thus, failure of insulin secretion by pancreatic ā¤-cells to compensate for insulin resistance results in hyperglycemia (6, 7) and uncontrolled hyperglycemia has the potential to negatively impact a number of organ systems.Mitochondrial dysfunction has been thought to play a critical role in insulin resistance and T2D (8 -11), and the role of mitochondria in insulin resistance is highly tissue specific. Despite this the mechanisms of action is controversial: in skeletal muscle, oxidative metabolism of lipids is reduced in T2D patients (11,12). However, it has been reported that carnitine palmitoyl transferase (CPT) activity is decreased or long-chain acyl-CoA dehydrogenase (LACD) is defic...