ECG signals are one of the most common tools used to diagnose cardiovascular diseases. ECG signals are obtained by measuring electrical changes on the skin surface. Arrhythmias occurring in the heart are diagnosed because the expert evaluates ECG signals. This diagnosis depends on the experience of the specialist and is a subjective evaluation. With the widespread use of computer-aided diagnostic systems, evaluations dependent on the expert's experience are objectified, and support is provided to the physician for diagnosis. For computer-aided ECG classification, beats are detected from ECG signals, and arrhythmias are detected by analyzing the structure of these beats. In recent years, deep learning models have been successful in classifying ECG signals. The data to be used in the classification process is realized with the help of morphological features or images of the signal. The main objective of this study is to compare the classification performance of digital and visual heartbeat data for ECG signal classification. For this purpose, 1D-CNN and 2D-CNN architectures are used for the type of ECG signals. As inputs of the 1D-CNN model, numerical values of the heartbeat signal and hand-crafted features obtained from these numerical values were used. The inputs of the 2D-CNN model are the raw signal image, spectrogram, scalogram, Mel-spectrogram, GFCC, and CQT images, which are visual representations of the heartbeat signal. The results show that the numerical model of the ECG signal fails for classification, while the hand-crafted features provide 85.2% accuracy. The results obtained with the visual representation of the signal provided over 99% classification accuracy for all images. The highest success rate was 99.9% with the visualization of the raw signal. In line with these findings, the 2D-CNN architecture and the visual representation of the heartbeat signal were found to be the most suitable method for classifying ECG signals.