Purpose
This paper aims to present a comprehensive overview of the patterns and trends of publications on artificial intelligence (AI) in personalised learning. It addresses the need to investigate the intellectual structure and development of this area in view of the growing amount of related research and practices.
Design/methodology/approach
A bibliometric analysis was conducted to cover publications on AI in personalised learning published from 2000 to 2022, including a total of 1,005 publications collected from the Web of Science and Scopus. The patterns and trends in terms of sources of publications, intellectual structure and major topics were analysed.
Findings
Research on AI in personalised learning has been widely published in various sources. The intellectual bases of related work were mostly on studies on the application of AI technologies in education and personalised learning. The relevant research covered mainly AI technologies and techniques, as well as the design and development of AI systems to support personalised learning. The emerging topics have addressed areas such as big data, learning analytics and deep learning.
Originality/value
This study depicted the research hotspots of personalisation in learning with the support of AI and illustrated the evolution and emerging trends in the field. The results highlight its latest developments and the need for future work on diverse means to support personalised learning with AI, the pedagogical issues, as well as teachers’ roles and teaching strategies.