Learning with huge amount of online educational resources is challenging, especially when variety resources come from different online systems. Recommender systems are used to help learners obtain appropriate resources efficiently in online learning. To improve the performance of recommender system, more and more learner's attributes (e.g. learning style, learning ability, knowledge level, etc.) have been considered. We are committed to proposing a learner-based recommender system, not just consider learner's physical features, but also learner's mood while learning. This recommender system can make recommendations according to the links between learners, and can change the recommendation strategy as learner's mood changes, which will have a certain improvement in recommendation accuracy and makes recommended results more reasonable and interpretable.