The reduced graphene oxide/iron oxide (rGO/Fe2O3) and reduced graphene oxide/cobalt oxide (rGO/Co3O4) composite anodes have been successfully prepared through a simple and scalable ball-milling synthesis. The substantial interaction of Fe2O3 and Co3O4 with the rGO matrix strengthens the electronic conductivity and limits the volume variation during cycling in the rGO/Fe2O3 and rGO/Co3O4 composites because reduced graphene oxide (rGO) helps the metal oxides (MOs) to attain a more efficient diffusion of Li-ions and leads to high specific capacities. As anode materials for LIBs, the rGO/Fe2O3 and rGO/Co3O4 composites demonstrate overall superb electrochemical properties, especially rGO/Fe2O3T−5 and rGO/Co3O4T−5, showcasing higher reversible capacities of 1021 and 773 mAhg−1 after 100 cycles at 100 mAg−1, accompanied by the significant rate performance. Because of their superior electrochemical efficiency, high capacity and low cost, the rGO/Fe2O3 and rGO/Co3O4 composites made by ball milling could be outstanding anode materials for LIBs. Due to the excellent electrochemical performance, the rGO/Fe2O3 and rGO/Co3O4 composites prepared via ball milling could be promising anode materials with a high capacity and low cost for LIBs. The findings may provide shed some light on how other metal oxides wrapped by rGO can be prepared for future applications.