We develop a probabilistic method for analyzing global features of a cellular network under intrinsic statistical fluctuations, which is important when there are finite numbers of molecules. By making a self-consistent mean field approximation of splitting the variables in order to reduce the large number of degrees of freedom, which is reasonable for a not very strongly interacting network, we discovered that the underlying energy landscape of the mitogen-activated protein kinases (MAPKs) signal transduction network (with experimentally measured or inferred parameters such as chemical reaction rate coefficients in the network) is funneled toward a global minimum characterized by the nonequilibrium steady-state fixed point of the system at the end of the signal transduction process. For this system, we also show that the energy landscape is robust against intrinsic fluctuations and random perturbation to the inherent chemical reaction rates. The ratio of the slope versus the roughness of the energy landscape becomes a quantitative measure of robustness and stability of the network. Furthermore, we quantify the dissipation cost of this nonequilibrium system through entropy production, caused by the nonequilibrium flux in the system. We found that a lower dissipation cost corresponds to a more robust network. This least dissipation property might provide a design principle for robust and functional networks. Finally, we find the possibility of bistable and oscillatory-like solutions, which are important for cell fate decisions, upon perturbations. The method described here can be used in a variety of biological networks.funnel ͉ stability ͉ potential landscape ͉ function