Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routing, and saliency maps for Focus-of-Attention. All these combined allow faces to be segregated. Events of different facial views are stored in memory and combined to identify the view and recognise a face, including its expression. In this paper, the authors show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views, achieving a view-invariant recognition rate of 91%. The authors also show that the same principle with eight views can be applied to 3D object recognition when they are mainly rotated about the vertical axis.