Abstract:To improve the accuracy of winter wheat yield estimation, the Crop Environment Resource Synthesis for Wheat (CERES-Wheat) model with an assimilation strategy was performed by assimilating measured or remotely-sensed leaf area index (LAI) values. The performances of the crop model for two different assimilation methods were compared by employing particle filters (PF) and the proper orthogonal decomposition-based ensemble four-dimensional variational (POD4DVar) strategies. The uncertainties of wheat yield estimates due to different assimilation temporal scales (phenological stages and temporal frequencies) and spatial scale were also analyzed. The results showed that, compared with the crop model without assimilation and with PF-based assimilation, a better yield estimate performance resulted when the POD4DVar-based strategy was used at the field scale. When using this strategy, root mean square errors (RMSE) of 523 kg·ha −1 , 543 kg·ha −1 and 172 kg·ha −1 and relative errors (RE) of 5.65%, 5.91% and 7.77% were obtained at the field plot scale, a pixel scale of 1 km and the county scale, respectively. Although the best yield estimates were obtained when all of the observed LAIs were assimilated into the crop model, an acceptable estimate of crop yield could also be achieved by assimilating fewer observations between jointing and anthesis periods of the crop growth season. With decreasing assimilation frequency and pixel resolution, the accuracy of the crop yield estimates decreased; however, the computation time decreased. Thus, it is important to consider reasonable spatio-temporal scales to obtain tradeoffs between accuracy and effectiveness in regional wheat estimates.