2019
DOI: 10.1186/s13638-019-1467-4
|View full text |Cite
|
Sign up to set email alerts
|

Retrieving the relative kernel dataset from big sensory data for continuous queries in IoT systems

Abstract: Internet of Things (IoT) is rapidly developed and widely deployed in recent years, which makes the sensory data generated by IoT systems explode. The huge amount of sensory data generated by some IoT systems has already exceeded the storage, transmission, and computation capacities of IoT systems. However, the valuable sensory data which is highly related to a query in an IoT system is relatively small. The sensory data which is highly related to a query Q forms the relative kernel dataset of Q. Therefore, ret… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 24 publications
0
3
0
1
Order By: Relevance
“…El Internet de las cosas (IoT) se despliega ampliamente en los últimos años, lo que hace que la generación de información aumente de forma exponencial, haciendo que los sistemas de almacenamiento de datos de los sistemas IoT colapsen. En el trabajo [48] se menciona la necesidad de solucionar la problemática de procesamiento y almacenamiento de datos que presentaran los sistemas IoT. Razón por la cual se recomienda explorar soluciones que apunten a conceptos de limpieza de datos (Data cleaning) y minería de datos (data mining), implementados sobre sistemas y dispositivos IoT.…”
Section: Recomendacionesunclassified
“…El Internet de las cosas (IoT) se despliega ampliamente en los últimos años, lo que hace que la generación de información aumente de forma exponencial, haciendo que los sistemas de almacenamiento de datos de los sistemas IoT colapsen. En el trabajo [48] se menciona la necesidad de solucionar la problemática de procesamiento y almacenamiento de datos que presentaran los sistemas IoT. Razón por la cual se recomienda explorar soluciones que apunten a conceptos de limpieza de datos (Data cleaning) y minería de datos (data mining), implementados sobre sistemas y dispositivos IoT.…”
Section: Recomendacionesunclassified
“…Zhu et al 19 and Nicolescu et al 20 argue that Industry 4.0 will significantly impact s-health scenarios such as great growth in connected devices (up to 100 billion by 2030). Gubbia et al 21 state that Industry 4.0 impacts will create value for businesses and consumers in multiple application areas: transport, urban planning, home automation, education, commerce, logistics, agriculture, industry and, notably, health.…”
Section: Related Workmentioning
confidence: 99%
“…All this data can be used by Artificial Intelligence (AI) and Machine Learning (ML) to extract valuable analytics. A particularly relevant ML task is anomaly detection, which intends to distinguish abnormal events from normal ones [1,2]. For instance, the early detection of operating machines with defects in industrial processes by using ML can potentially reduce maintenance time and costs, prevent or reduce production stops, and increase the safety of human operators that operate the machines [3,4].…”
Section: Introductionmentioning
confidence: 99%