In this paper, the effects of compressive pre-deformation and successive pre-artificial aging on the compressive creep aging behavior and microstructure evolution of the Al-Cu-Li alloy have been studied. Severe hot deformation mainly occurs near the grain boundaries during the compressive creep initially, which steadily extends to the grain interior. After that, the T1 phases will obtain a low radius–thickness ratio. The secondary T1 phases in pre-deformed samples usually only nucleate on dislocation loops or Shockley incomplete dislocations induced by movable dislocations during creep, which are especially prevalent in low plastic pre-deformation. For all pre-deformed and pre-aged samples, two precipitation situations exist. When pre-deformation is low (3% and 6%), solute atoms (Cu and Li) can be consumed prematurely during pre-aging at 200 °C, with dispersed coherent Li-rich clusters in the matrix. Then, the pre-aged samples with low pre-deformation no longer have the ability to form secondary T1 phases in large quantities during subsequent creep. When dislocation entangles seriously to some extent, a large quantity of stacking faults, together with a “Suzuki atmosphere” containing Cu and Li, can provide the nucleation sites for the secondary T1 phase, even when pre-aged at 200 °C. The sample, pre-deformed by 9% and pre-aged at 200 °C, displays excellent dimensional stability during compressive creep because of the mutual reinforcement of entangled dislocations and pre-formed secondary T1 phases. In order to decrease the total creep strain, increasing the pre-deformation level is more effective than pre-aging.