Neuropathic pain, resulting from the dysfunction of the peripheral and central nervous system, occurs in a variety of pathological conditions including trauma, diabetes, cancer, HIV, surgery, multiple sclerosis, ischemic attack, alcoholism, spinal cord damage, and many others. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. The clinical failure of most effective drugs is often not due to a lack of drug efficacy but due to the dose-limiting central nervous system (CNS) toxicity of the drugs that preclude dose escalation. There is a need for cross-disciplinary collaborations to meet these challenges. In this regard, the integration of nanotechnology with neuroscience is one of the most important fields. In recent years, promising preclinical research has been reported in this field. This review highlights the current challenges associated with conventional neuropathic pain treatments, the scope for nanomaterials in delivering drugs across the blood−brain barrier, and the state and prospects of nanomaterials for the management of neuropathic pain.