Background
Sufficient biofilm removal in the furcation area (FA) is a major challenge in the clinical practice of supportive periodontal therapy. The aim of the present experimental study was to simulate subgingival cleaning of the FA using a powered scaler (sonic scaler (AIR), ultrasonic scaler (US)) for conventional mechanical debridement versus two air polishing with nonabrasive powder (LAPA-1: glycine powder, LAPA-2: erythritol powder) and different nozzles for supra-/subgingival cleaning for each device.
Methods
Seven trained and calibrated operators with ≥ 2 years each of professional experience in treating periodontitis used the instruments to clean 3D-printed replicas of six molars with through-and-through FA (four 3-rooted and two 2-rooted teeth) in a manikin head. AIR and US were used in the control group; air polishing instruments were used in the test group. For reproducible evaluation, the test teeth were separated vertically into two or three parts, illuminated with ultraviolet light, photographed and evaluated planimetrically. Treatment time (TrT, in s) and relative cleaning efficacy (RCE, in %) were measured.
Results
Overall, 3-rooted molars (RCE in the entire FA, 23.19 ± 20.98%) could be cleaned significantly less effectively than 2-rooted molars (53.04 ± 28.45%, p < 0.001), regardless of the instrument used. In the cleaning of the entire FA, significantly higher RCE values were achieved with conventional mechanical debridement (AIR/US: 46.04 ± 25.96%/39.63 ± 22.02%; AIR vs. US: p > 0.05) than with air polishing (LAPA-1/LAPA-2: 34.06 ± 29.48%/17.09 ± 18.85%; LAPA-1 vs. LAPA-2: p < 0.001) regardless of whether a supra- or subgingival cleaning nozzle used (p < 0.001). Only LAPA-1 with a subgingival nozzle showed RCE values comparable to those of US (41.07 ± 28.95% vs. 39.63 ± 22.02%, p > 0.05). TrT was longest for US (299.40 ± 120.69 s) and shortest for LAPA-1 with a supragingival nozzle (129.67 ± 60.92 s, p < 0.001).
Conclusions
All of the examined instruments were effective to some degree in removing the simulated biofilm from the FA, but they differed substantially in cleaning efficacy. Only one air polishing device (LAPA-1) with a rigid subgingival nozzle was able to achieve RCE values similar to those of US. The current investigation confirmed that conventional mechanical debridement with powered scalers were most effective, but treatment took longer with these devices than air polishing.