2024
DOI: 10.1007/s13201-024-02211-5
|View full text |Cite
|
Sign up to set email alerts
|

Revealing accuracy in climate dynamics: enhancing evapotranspiration estimation using advanced quantile regression and machine learning models

Saeed Sharafi,
Mehdi Mohammadi Ghaleni

Abstract: This study examines the effectiveness of various quantile regression (QR) and machine learning (ML) methodologies developed for analyzing the relationship between meteorological parameters and daily reference evapotranspiration (ETref) across diverse climates in Iran spanning from 1987 to 2022. The analyzed models include D-vine copula-based quantile regression (DVQR), multivariate linear quantile regression (MLQR), Bayesian model averaging quantile regression (BMAQR), as well as machine learning algorithms su… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 91 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?