Revealing accuracy in climate dynamics: enhancing evapotranspiration
estimation using advanced quantile regression and machine learning models
Saeed Sharafi,
Mehdi Mohammadi Ghaleni
Abstract:This study examines the effectiveness of various quantile regression (QR) and machine learning (ML) methodologies developed for analyzing the relationship between meteorological parameters and daily reference evapotranspiration (ETref) across diverse climates in Iran spanning from 1987 to 2022. The analyzed models include D-vine copula-based quantile regression (DVQR), multivariate linear quantile regression (MLQR), Bayesian model averaging quantile regression (BMAQR), as well as machine learning algorithms su… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.