Both coral‐associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co‐occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole‐ecosystem scale.