The Sikkim region of the Eastern Himalayas is highly susceptible to Glacial Lake Outburst Floods (GLOFs), a risk that has increased significantly due to rapid glacial retreat driven by climate change in recent years. This study presents a comprehensive evaluation of GLOF susceptibility in Sikkim, employing Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) models. Key factors influencing GLOF vulnerability, including lake volume, seismic activity, precipitation, slope, and proximity to rivers, were quantified to develop AHP and FAHP based susceptibility maps. These maps were validated using Receiver Operating Characteristic (ROC) curves, with the AHP method achieving an Area Under the Curve (AUC) of 0.92 and the FAHP method scoring 0.88, indicating high predictive accuracy for both models. A comparison of the two approaches revealed distinct characteristics, with FAHP providing more granular insights into moderate-risk zones, while AHP offered stronger predictive capability for high-risk areas. Our results indicated that the expansion of glacial lakes, particularly over the past three decades, has heightened the potential for GLOFs, highlighting the urgent need for continuous monitoring and adaptive risk mitigation strategies in the region. This study, in addition to enhancing our understanding of GLOF risks in Sikkim, also provides a robust framework for assessing and managing these risks in other glacial regions worldwide.