Conspectus
The assembly
of individual colloidal nanocrystals into macroscopic
solvogels and aerogels introduced a new exciting type of material
into the class of porous architectures. In these so-called nanocrystal
gels, the structure and properties can be controlled and fine-tuned
to the smallest details. Recently it was shown that by employing nanocrystal
building blocks for such gel materials, the interesting nanoscopic
properties can be conserved or even expanded to properties that are
available neither in the nanocrystals nor in their respective bulk
materials. In general, the production of these materials features
the wet-chemical synthesis of stable nanocrystal colloids followed
by their carefully controlled destabilization to facilitate arrangement
of the nanocrystals into highly porous, interconnected networks. By
isolation of the synthesis of the discrete building blocks from the
assembly process, the electronic structure, optical properties, and
structural morphology can be tailored by the myriad of procedures
developed in colloidal nanocrystal chemistry. Furthermore, knowledge
and control over the structure–property correlation in the
resulting gel structures opens up numerous new ways for extended and
advanced applications. Consequently, the amount of different materials
converted to nanocrystal-based gel structures is rising steadily.
Meanwhile the number of methods for assembly initiation is likewise
increasing, offering control over the overall network structure and
porosity as well as the individual nanocrystal building block connection.
The resulting networks can be dried by different methods to obtain
highly porous air-filled networks (aerogels) or applied in their wet
form (solvogels). By now a number of different applications profiting
from the unique advantages of nanocrystal-based gel materials have
been realized and exploited in the areas of photocatalysis, electrocatalysis,
and sensing.
In this Account, we aim to summarize the efforts
undertaken in
the structuring of nanocrystal-based network materials on different
scales, fine-tuning of the individual building blocks on the nanoscale,
the network connections on the microscale, and the macroscale structure
and shape of the final construct. It is exemplarily demonstrated how
cation exchange reactions (at the nanoscale), postgelation modifications
on the nanocrystal networks (microscale), and the structuring of the
gels via printing techniques (macroscale) endow the resulting nanocrystal
gel networks with novel physicochemical, mechanical, and electrocatalytic
properties. The methods applied in the more traditional sol–gel
chemistry targeting micro- and macroscale structuring are also reviewed,
showing their future potential promoting the field of nanocrystal-based
aerogels and their applications.