Recent advancements in tissue engineering, particularly cardiac tissue bioprinting, have been remarkable. A pivotal aspect of these advancements is the integration of electrically conductive biomaterials, which are essential for creating functional and viable substitutes for damaged cardiac tissue. Among these materials, carbon-based nanoarchitectonics, such as graphene, carbon nanotubes (CNTs), and carbon nanofibers (CNFs), have garnered significant attention due to their exceptional electrical properties and biocompatibility. This perspective carefully explores the contemporary landscape of utilizing these carbon-based materials in cardiac tissue bioprinting, highlighting their unique properties and strong biocompatibility. Graphene, known for its single-layer carbon structure and exceptional electrical conductivity, plays a crucial role in enhancing cell communication and tissue functionality in engineered cardiac tissues. Similarly, carbon nanotubes (CNTs) and carbon nanofibers (CNFs) offer outstanding electrical conductivity and mechanical strength, making them ideal candidates for improving structural integrity and electrical signaling within bioprinted cardiac constructs. The review emphasizes how these carbon-based materials seamlessly integrate into bioinks, facilitating three-dimensional bioprinting processes to create intricate cardiac tissue structures that closely mimic native tissues. This integration not only enhances the mechanical properties of bioinks but also supports cell adhesion, proliferation, and differentiation that are crucial for developing functional cardiac tissues. Overall, the transformative impact of carbon-based materials in regenerative medicine, particularly in cardiac regeneration, underscores an era of innovation. These materials hold immense promise for advancing treatment options for heart diseases, offering potential solutions for effectively repairing and replacing damaged cardiac tissue effectively.