2021
DOI: 10.48550/arxiv.2108.09976
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Revealing the Distributional Vulnerability of Discriminators by Implicit Generators

Abstract: An explicit discriminator trained on observable in-distribution (ID) samples can make high-confidence prediction on out-of-distribution (OOD) samples due to its distributional vulnerability. This is primarily caused by the limited ID samples observable for training discriminators when OOD samples are unavailable. To address this issue, the state-of-the-art methods train the discriminator with OOD samples generated by general assumptions without considering the data and network characteristics. However, differe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 28 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?