2023
DOI: 10.1002/anie.202215728
|View full text |Cite
|
Sign up to set email alerts
|

Revealing the Formation Mechanism and Optimizing the Synthesis Conditions of Layered Double Hydroxides for the Oxygen Evolution Reaction

Abstract: Layered double hydroxides (LDHs), whose formation is strongly related to OH− concentration, have attracted significant interest in various fields. However, the effect of the real‐time change of OH− concentration on LDHs’ formation has not been fully explored due to the unsuitability of the existing synthesis methods for in situ characterization. Here, the deliberately designed combination of NH3 gas diffusion and in situ pH measurement provides a solution to the above problem. The obtained results revealed the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
22
0
9

Year Published

2023
2023
2024
2024

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 20 publications
(34 citation statements)
references
References 62 publications
3
22
0
9
Order By: Relevance
“…It is worth noting that the peak between 1.1 and 1.4 V is the oxidation peak in the LSV of Fe-Ni based electrocatalysts. [40][41][42][43] The corresponding overpotentials of the electrocatalysts at different current densities presented in Figure 3b Furthermore, such fast kinetics could be verified by the EIS measurements (Figure 3d), from which the Fe 1.2 (CoNi) 1.8 Se 6 MESe manifests the smallest semicircle among all the specimens. Similarly, the resistance of R ct is obtained by the equivalent circuit model (inset of Figure 3d).…”
Section: Resultssupporting
confidence: 55%
See 1 more Smart Citation
“…It is worth noting that the peak between 1.1 and 1.4 V is the oxidation peak in the LSV of Fe-Ni based electrocatalysts. [40][41][42][43] The corresponding overpotentials of the electrocatalysts at different current densities presented in Figure 3b Furthermore, such fast kinetics could be verified by the EIS measurements (Figure 3d), from which the Fe 1.2 (CoNi) 1.8 Se 6 MESe manifests the smallest semicircle among all the specimens. Similarly, the resistance of R ct is obtained by the equivalent circuit model (inset of Figure 3d).…”
Section: Resultssupporting
confidence: 55%
“…It is worth noting that the peak between 1.1 and 1.4 V is the oxidation peak in the LSV of Fe‐Ni based electrocatalysts. [ 40–43 ] The corresponding overpotentials of the electrocatalysts at different current densities presented in Figure 3b reveal that the Fe 1.2 (CoNi) 1.8 Se 6 eletrocatalyst only requires 216 and 286 mV to attain the current densities of 10 and 200 mA cm −2 , respectively. These overpotentials were much lower than that of Fe 1.2 (CoNi) 1.8 ‐MOF precursor (246 and 323 mV), Fe 1.2 (CoNi) 1.8 Se 3 (272 and 375 mV), Fe 1.2 (CoNi) 1.8 Se 9 (224 and 294 mV) and commercial RuO 2 (295 and 470 mV).…”
Section: Resultsmentioning
confidence: 99%
“…Als Reaktion auf diese Herausforderung wurde eine Vielzahl von hochmodernen Instrumenten eingesetzt, um die Reaktionszwischenprodukte und das Verhalten von Hydroxiden während ihres Bildungsprozesses oder des OER‐Katalyseprozesses durch In situ‐ oder Operando ‐Messungen zu überwachen, da diese Messungen Einblicke in die Materialinformationen unter tatsächlichen Reaktionsbedingungen liefern. Zahlreiche Studien haben gezeigt, dass die Erforschung des Bildungsprozesses und des OER‐Katalyseprozesses von Hydroxiden mit Hilfe von In situ‐ und Operando ‐Techniken wertvolle Möglichkeiten bietet, präzisere, detailliertere und umfassendere Nachweise und Einblicke in den Entwicklungsprozess von Struktur, Zusammensetzung, Morphologie, Größe und anderen Faktoren zu gewinnen, was zu einem tieferen Verständnis der Mechanismen hinter dem Bildungsprozess und der OER‐Katalyseaktivität beiträgt [11,17d,20a] . Jeder Ansatz zur In situ‐ und Operando ‐Charakterisierung hat seine Vor‐ und Nachteile.…”
Section: In Situ‐ Und Operando‐technikenunclassified
“…In diesem Fall sind In situ‐ oder Operando ‐Techniken besonders wichtig, um den Bildungsmechanismus und den OER‐Katalysemechanismus von Hydroxiden aufzudecken, da diese Techniken in der Lage sind, Echtzeitinformationen über die Kinetik der Reaktionen zu erhalten. In jüngster Zeit wurden enorme Fortschritte bei der Erforschung der strukturellen Entwicklung und der Reaktionsmechanismen von Hydroxiden während der Bildungsphase und des katalytischen OER‐Prozesses durch verschiedene In situ‐ oder Operando ‐Techniken erzielt [11,22] . Diese aufregenden Errungenschaften können jedoch noch nicht die erfolgreiche Übertragung der Hydroxid‐Elektrokatalysatoren für die OER vom Labor in die Industrie erleichtern, was zeigt, dass es in diesem Bereich zweifellos Herausforderungen gibt, die wir noch zu bewältigen haben.…”
Section: Introductionunclassified
“…In this case, in situ or operando techniques are particularly indispensable for revealing the formation mechanism and OER catalytic mechanism of hydroxides as these techniques are capable of obtaining real‐time information on the kinetics of the reactions. Recently, tremendous progress has been made in exploring the nature of the structural evolution and the reaction mechanisms of hydroxides during the formation process and also the OER catalytic process with the help of various in situ or operando techniques [11,22] . However, these exciting achievements still cannot facilitate the successful translation of the hydroxide electrocatalysts for OER from the laboratory to the industry, indicating that there are undoubtedly challenges in this field that we have yet to address.…”
Section: Introductionmentioning
confidence: 99%