Cardiac hypertrophy has become a major cardiovascular problem wordwide and is considered the early stage of heart failure. Treatment and prevention strategies are needed due to the suboptimal efficacy of current treatment methods. Recently, many studies have demonstrated the important role of histone acetylation in myocardium remodelling along with cardiac hypertrophy. A Chinese herbal extract containing anacardic acid (AA) is known to possess strong histone acetylation inhibitory effects. In previous studies, we demonstrated that AA could reverse alcoholâinduced cardiac hypertrophy in an animal model at the foetal stage. Here, we investigated whether AA could attenuate cardiac hypertrophy through the modulation of histone acetylation and explored its potential mechanisms in the hearts of transverse aortic constriction (TAC) mice. This study showed that AA attenuated hyperacetylation of acetylated lysine 9 on histone H3 (H3K9ac) by inhibiting the expression of p300 and p300/CBPâassociated factor (PCAF) in TAC mice. Moreover, AA normalized the transcriptional activity of the heart nuclear transcription factor
MEF2A
. The high expression of cardiac hypertrophyâlinked genes (
ANP, ÎČâMHC
) was reversed through AA treatment in the hearts of TAC mice. Additionally, we found that AA improved cardiac function and survival rate in TAC mice. The current results further highlight the mechanism by which histone acetylation is controlled by AA treatment, which may help prevent and treat hypertrophic cardiomyopathy.