Certain dentin hypersensitivity treatment materials include oxalic acid to coat dentin surfaces with minerals, while certain organic acids possess a remineralization effect. Herein, an organic acid that inhibits the demineralization and coating of root surfaces was evaluated. Specimens were produced using five non-carious extracted bovines. Four different acids were used: oxalic acid (OA), malonic acid (MA), polyacrylic acid (PA), and succinic acid (SA). Each acid was applied to the root surface and washed using distilled water or a remineralization solution, and the surface was observed using scanning electron microscopy (SEM). All the surfaces of each specimen, barring the polished surface, were covered with wax and immersed in an automatic pH cycling system for two weeks. Dentin demineralization was analyzed using transverse microradiography (TMR) before and after pH cycling. SEM analysis demonstrated that the three acid groups demineralized the dentin surface, whereas the OA group generated crystals covering the dentin surface, even in a distilled water environment. TMR analysis revealed that the OA groups showed significantly lower integrated mineral loss compared with the other groups, even in the distilled water environment. The results suggest that OA generates insoluble calcium oxalate crystals on the dentin and suppresses demineralization even under low saliva conditions.