Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We study displacement flows involving pairs of Newtonian and shear-thinning fluids in vertical annular geometries using experimental and computational methods. This investigation is motivated by the primary cementing of casing strings, which is part of the well construction operation. In displacement scenarios that involve density-unstable fluid pairs, it is well-known that buoyancy can increase the inter-mixing between fluids and hence contaminate cementing fluids due to gravity-driven instabilities. Our study seeks to investigate how the imposed flow rate, the degree of inner pipe centralization, and the viscosity of the fluids affect the displacement efficiency in such cases. The study complements our recent paper [R. Zhang et al., “Vertical cementing displacement flows of shear-thinning fluids,” Phys. Fluids 35, 113110 (2023)], which focused on density-stable configurations, and here we consider the more challenging, density-unstable displacement flows. Our experiments and three-dimensional computational results are in general agreement. The results show that displacements improve for viscosity-stable conditions, i.e., when the displacing fluid is the more viscous fluid. Characteristic fingering patterns occur in the interface region of the fluids for viscosity-unstable conditions. The eccentricity of the inner pipe is seen to promote the channeling of fluids, and viscosity-unstable conditions can exacerbate this effect further. A degree of stabilization of density unstable displacements can be achieved by increasing the imposed flow rate and the viscosity of the fluids while maintaining a stable viscosity ratio.
We study displacement flows involving pairs of Newtonian and shear-thinning fluids in vertical annular geometries using experimental and computational methods. This investigation is motivated by the primary cementing of casing strings, which is part of the well construction operation. In displacement scenarios that involve density-unstable fluid pairs, it is well-known that buoyancy can increase the inter-mixing between fluids and hence contaminate cementing fluids due to gravity-driven instabilities. Our study seeks to investigate how the imposed flow rate, the degree of inner pipe centralization, and the viscosity of the fluids affect the displacement efficiency in such cases. The study complements our recent paper [R. Zhang et al., “Vertical cementing displacement flows of shear-thinning fluids,” Phys. Fluids 35, 113110 (2023)], which focused on density-stable configurations, and here we consider the more challenging, density-unstable displacement flows. Our experiments and three-dimensional computational results are in general agreement. The results show that displacements improve for viscosity-stable conditions, i.e., when the displacing fluid is the more viscous fluid. Characteristic fingering patterns occur in the interface region of the fluids for viscosity-unstable conditions. The eccentricity of the inner pipe is seen to promote the channeling of fluids, and viscosity-unstable conditions can exacerbate this effect further. A degree of stabilization of density unstable displacements can be achieved by increasing the imposed flow rate and the viscosity of the fluids while maintaining a stable viscosity ratio.
Deepwater operators continually face technical and environmental challenges to drilling and completing wells safely and efficiently. To address both current and future challenges, the industry has leveraged radio frequency identification (RFID) technology to reduce risk, rig time, and nonproductive time (NPT) and to perform operations that traditional tools cannot perform. RFID technology has been integrated into drilling and completions tools to improve performance and reduce risk for offshore operations, such as drilling underreamed holes, spotting lost circulation materials, setting packers, opening stimulation sleeves, and performing subsurface reverse cementing. These tools use RFID tags released from the rig floor to enable downhole hydraulic power units (HPUs) to operate the tools. This paper describes criteria for selecting RFID-enabled tools rather than traditional tools, integration of RFID tools with operations, and value-added features enabled by RFID. Contingency, safety, and risk assessment factors are discussed, along with case studies validating performance and suitability of selected RFID tools. Three case studies describe how RFID solutions for drilling and completions were selected and applied in high-cost environments to address specific challenges and job objectives. Design and bench testing of RFID tools to enable future subsurface reverse cementing operations are also covered. The first case study describes an RFID lower-completion system that was successfully deployed into a southern North Sea extended-reach well. The system enabled remote control of flapper isolation valves and remote operation of stimulation sleeves to access the reservoir, which aimed to eliminate the need for intervention between treatments and ultimately improved fracture cycle time and reduced risk. In the Gulf of Mexico, an RFID drilling underreamer was used to set a liner shoe precisely at the casing point and eliminate a dedicated hole-opening run that would have been needed with traditional underreamers. The 8 1/2-in. hole section was drilled; but losses prevented the mechanical reamer from opening. Therefore, the 650-ft hole section was drilled to TD using the bit only. To eliminate multiple trips to take pressure samples and underream the hole section to 9-7/8 in., an RFID underreamer was placed below the measurement-while-drilling/logging-while-drilling (MWD/LWD) equipment. After pressure measurements were taken, the underreamer was actuated with RFID tags to enlarge the entire 650-ft openhole section with less than a 13-ft rathole. In the last case study, an RFID circulation sub was deployed above other bottomhole assembly (BHA) components, including an RFID underreamer and a conventional ball drop underreamer. This configuration enabled the operator to ream out the 22-in. cemented show track, underream the openhole section, and efficiently clean the wellbore at total depth. Because of BHA and standpipe pressure limitations, the RFID circulation sub was used in a split-flow application to bypass a percentage of the total flow to allow for a higher downhole flow rate. The sub helped to achieve high flow rates, high annular velocity, and turbulent flow, which contributed to better hole cleaning and improved wellbore integrity. Selecting the best tools and technology for specific applications results in streamlined applications and reduced operational risk. The methodology for selection, design, planning, and implementation of RFID drilling and completions tools identifies when RFID technology can be beneficial to deepwater operations.
Summary Reverse-circulation primary cementing (RCPC), a technique in which cement is pumped down the annulus, has historically been used for specialized cases as an alternative to conventional-circulation primary cementing (CCPC), in which cement is pumped down the casing and circulates up the annulus. As the potential application of this placement technique has extended to deep water, traditional conventional hydraulic analysis is insufficient because of the complex flow path required by deepwater RCPC. The focus of this study is to provide a hydraulic analysis of this flow path, to determine causes of apparent equivalent-circulating-density (ECD) reductions, and to provide operators and well engineers with simple tools to estimate the changes in ECDs throughout the casing annulus. Investigations of the specific hydraulic considerations of RCPC have been explored and evaluated since its first applications. This analysis builds upon previously published case studies and evaluations of hydraulics for traditional RCPC in which fluids are directly injected into the annulus from surface. By use of a graphical analysis, the hydraulics of deepwater RCPC, which requires an unconventional-flow path to divert flow from the work string into the annulus below the seafloor, is evaluated and compared with conventional placement. The results of this study can be used for an initial determination of whether RCPC will produce the desired results for a specific wellbore geometry. By developing expressions for the pressure in the casing annulus for both conventional and reverse circulation, an analytic equation for the critical depth can be derived, assuming a constant pressure drop per unit length in the casing annulus. This study also evaluates the cause of pressure differences between conventional and reverse placement and the relationship of frictional-pressure drops, hydrostatic effects, and the elimination of applied lift pressure. If the ECD is reduced at the bottom of the hole and increased at the previous casing shoe, then there is a point between those two where the pressures in conventional and reverse circulation are equal. A critical depth analysis has previously been performed for traditional RCPC applications. For deepwater applications that take into account the unconventional-flow path, analysis in this study shows that well geometry and location of a weak zone in the formation affect which placement method results in the lowest ECDs in a targeted area. For deepwater RCPC to be effective, the weakest part of the formation should be below the determined critical depth of the well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.