Both the current trends in technology such as smart phones, general mobile devices, stationary sensors, and satellites as we as a new user mentality of using this technology to voluntarily share enriched location information produces a flood of geo-spatial and geo-spatio-temporal data. This data flood provides a tremendous potential of discovering new and useful knowledge. But in addition to the fact that measurements are imprecise, spatial data is often interpolated between discrete observations. To reduce communication and bandwidth utilization, data is often subjected to a reduction, thereby eliminating some of the known/recorded values. These issues introduce the notion of uncertainty in the context of spatio-temporal data management, an aspect raising imminent need for scalable and flexible solutions. The main scope of this chapter is to survey existing techniques for managing, querying, and mining uncertain spatio-temporal data. First, this chapter surveys common data representations for uncertain data, explains the commonly used possible worlds semantics to interpret an uncertain database, and surveys existing system to process uncertain data. Then this chapter defines the notion of different probabilistic result semantics to distinguish the task of enrich individual objects with probabilities rather than enriched entire results with probabilities. To distinguish between result semantics is important, as for many queries, the problem of computing object-level result probabilities can be done efficiently, whereas the problem of computing probabilities of entire results is often exponentially hard. Then, this chapter provides an overview over probabilistic query predicates to quantify the required probability of a result to be included in the result. Finally, this chapter introduces a novel paradigm to efficiently answer any kind of query on uncertain data: the Paradigm of Equivalent Worlds, which groups the exponential set of possible database worlds into a polynomial number of set of equivalent worlds that can be processed efficiently. Examples and use-cases of querying uncertain spatial data are provided using the example of uncertain range queries.