The conventional working fluids used in absorption chillers (water/lithium bromide and ammonia/water) present several disadvantages that limit their effective application. Recently, some works have reported the addition of NaOH to the ammonia/water working pair to improve the separation of ammonia in the generator, reducing the chiller driving temperature by taking advantage of the common ion effect. However, the presence of NaOH in the absorber has a negative impact on the absorption process. This study analyzes the technical viability of separating NaOH from ammonia/water/NaOH mixtures by using reverse osmosis membranes to incorporate this separation method into future chiller designs that work with these mixtures. The concentration range analyzed covers the solution concentration values of interest for absorption chiller applications (approximate 0.02−0.05 mass fraction of NaOH and 0.3 mass fraction of NH3). The results obtained show that, by using an in-series configuration of the modules, reverse osmosis technology is suitable for separating NaOH from the ternary mixtures studied.