Ga doped ZnO (GZO) films prepared by sputtering at room temperature were rapid thermal annealed (RTA) at elevated temperatures. With increasing annealing temperature up to 570°C, film transmission enhanced significantly over wide spectral range especially in infrared region. Hall effect measurements revealed that carrier density decreased from ∼8 × 1020 to ∼ 3 × 1020 cm−3 while carrier mobility increased from ∼15 to ∼28 cm2/Vs after the annealing, and consequently low film resistivity was preserved. Hydrogenated microcrystalline Si (µc‐Si:H) and microcrystalline Si1‐xGex (µc‐Si1‐xGex:H, x = 0.1) thin film solar cells fabricated on textured RTA‐treated GZO substrates demonstrated strong enhancement in short‐circuit current density due to improved spectral response, exhibiting quite high conversion efficiencies of 9.5% and 8.2% for µc‐Si:H and µc‐Si0.9Ge0.1:H solar cells, respectively. Copyright © 2011 John Wiley & Sons, Ltd.