With the rapid development of cloud storage, an increasing number of users store their images in the cloud. These images contain many business secrets or personal information, such as engineering design drawings and commercial contracts. Thus, users encrypt images before they are uploaded. However, cloud servers have to hide secret data in encrypted images to enable the retrieval and verification of massive encrypted images. To ensure that both the secret data and the original images can be extracted and recovered losslessly, researchers have proposed a method that is known as reversible data hiding in encrypted images (RDHEI). In this paper, a new RDHEI method using median edge detector (MED) and two’s complement is proposed. The MED prediction method is used to generate the predicted values of the original pixels and calculate the prediction errors. The adaptive-length two’s complement is used to encode the most prediction errors. To reserve room, the two’s complement is labeled in the pixels. To record the unlabeled pixels, a label map is generated and embedded into the image. After the image has been encrypted, it can be embedded with the data. The experimental results indicate that the proposed method can reach an average embedding rate of 2.58 bpp, 3.04 bpp, and 2.94 bpp on the three datasets, i.e., UCID, BOSSbase, BOWS-2, which outperforms the previous work.