SnO2@carbon nanofibers were synthesized by a combination of electrospinning and subsequent thermal treatments in air and then in argon to demonstrate their potential use as an anode material in lithium ion battery applications. The as-prepared SnO2@carbon nanofibers consist of SnO2 anoparticles/nanocrystals encapsulated in a carbon matrix and contain many mesopores. Because of the charge pathways, both for the electrons and the lithium ions, and the buffering function provided by both the carbon encapsulating the SnO2 nanoparticles and the mesopores, which tends to alleviate the volumetric effects during the charge/ discharge cycles, the nanofibers display a greatly improved reversible capacity of 420 mAh/g after 100 cycles at a constant current of 100 mA/g, and a sharply enhanced reversible capacity at higher rates (0.5, 1, and 2 C) compared with pure SnO2 nanofibers, which makes it a promising anode material for lithium ion batteries.
KeywordsEasy, preparation, SnO2, carbon, composite, nanofibers, improved, lithium, ion, storage, properties
Disciplines
Arts and Humanities | Life Sciences | Medicine and Health Sciences | Social and Behavioral Sciences
Publication DetailsYang, Z., Du, G., Guo, Z., Yu, X., Chen, Z., Zhang, P., Chen, G. & Liu, H. K. (2010) SnO 2 @carbon nanofibers were synthesized by a combination of electrospinning and subsequent thermal treatments in air and then in argon to demonstrate their potential use as an anode material in lithium ion battery applications. The as-prepared SnO 2 @carbon nanofibers consist of SnO 2 nanoparticles/nanocrystals encapsulated in a carbon matrix and contain many mesopores. Because of the charge pathways, both for the electrons and the lithium ions, and the buffering function provided by both the carbon encapsulating the SnO 2 nanoparticles and the mesopores, which tends to alleviate the volumetric effects during the charge/discharge cycles, the nanofibers display a greatly improved reversible capacity of 420 mAh/g after 100 cycles at a constant current of 100 mA/g, and a sharply enhanced reversible capacity at higher rates (0.5, 1, and 2 C) compared with pure SnO 2 nanofibers, which makes it a promising anode material for lithium ion batteries.