“…The possibility of modulating signaling pathways and cell functions with high spatiotemporal precision offers an entirely new modality to dissect molecular mechanisms governing cell fate determination (Toettcher et al, 2011; Zoltowski and Gardner, 2011; Tucker, 2012; Kim and Lin, 2013; Tischer and Weiner, 2014; Zhang and Cui, 2015). Photoactivatable proteins have been used in multiple model systems including yeast (Shimizu-Sato et al, 2002; Tyszkiewicz and Muir, 2008; Hughes et al, 2012; Strickland et al, 2012), mammalian cells (Levskaya et al, 2009; Wu et al, 2009; Yazawa et al, 2009; Kennedy et al, 2010; Toettcher et al, 2011; Idevall-Hagren et al, 2012; Mills et al, 2012; Zhou et al, 2012; Bugaj et al, 2013; Grusch et al, 2014; Kim et al, 2014; Lee et al, 2014; Taslimi et al, 2014; Zhang et al, 2014; Hughes et al, 2015; Kawano et al, 2015; Yumerefendi et al, 2016), primary neurons (Chen et al, 2013; Kakumoto and Nakata, 2013; Konermann et al, 2013), Drosophila (Boulina et al, 2013), zebrafish embryos (Liu et al, 2012; Motta-Mena et al, 2014; Buckley et al, 2016) and Xenopus embryos (Krishnamurthy et al, 2016). To control cargo trafficking, photoactivatable proteins such as the light, oxygen, voltage-peptide epitope (LOV-pep) and engineered PDZ domain (ePDZ; van Bergeijk et al, 2015) or cryptochrome 2 (CRY2) and cryptochrome 2 interacting basic helix-loop-helix (CIB1; Duan et al, 2015) were fused to cargoes and motor proteins or motor adapters (Figure 1D).…”