Multisequential reversible phase transitions based on molecular materials have important applications in ferroelastic materials, ferroeletric materials, switchable dielectric materials, and temperature-controlling materials. Here, we report that a new compound, [Hcpa-(18-crown-6)] + [ClO 4 ] − (1) (where Hcpa represents protonated cyclopentylamine cations) displays unusual multisequential reversible phase transitions accompanied by switchable dielectric behaviors. The stepwise synergistic disordering of Hcpa cations and ClO 4 − anions leads to the sequential reversible phase transitions and symmetry breaking. These unusual reversible phase transitions were further confirmed by the variable-temperature powder X-ray diffractometry (PXRD), thermal anomalies of differential scanning calorimetry (DSC) measurements, and abrupt dielectric anomalies in the heating and cooling processes.