The photostability of dye molecules trapped in transparent solid matrices synthesized by the solgel technique was studied both experimentally and theoretically using a model with numerical and approximate analytical solutions. The model is based on a one-photon photodestruction process with the creation of an absorbing bleached molecule. We give the number of photons that different trapped dye molecules can absorb on average before they are bleached. Dyes such as Perylene Red, Perylene Orange, Pyrromethenes 567 and 597, Rhodamines 6G and B, DCM, a Xanthylium salt, and Neon Red were investigated; significant differences were observed. Some dye molecules in solvents were also studied; increased stability resulted when the molecules were trapped in solid matrices.