The photonic crystals (PCs) exhibit photonic band gap (PBG), inhibiting specific wavelength of light decided by structural periodicity. PCs are a new class of periodic dielectric media that can provide novel ways to manipulate and control light. Researchers have recently devoted extensive efforts to fabricating PCs with controlled symmetry, size, and defects on a large scale and tuning of PBG. Liquid crystalline (LC) materials exhibiting self-organization, phase transition, and molecular orientation behaviors in response to external stimuli are attracting significant attention for the bottom-up nanofabrication and tuning of advanced photonic materials and devices. Here, we will introduce selforganization of PCs from LCs and photoswitching mechanism of PBG based on phase transition and anisotropic orientation of LCs.